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SECTION 1
INTRODUCTION

This report describes the results of a series of tests designed to determine the behav-
ior of a "most probable” dust blend in a F-100 engine combustor. This "most probable"
dust blend is the best state-of-the-art prediction of materials produced during a typical lay-
down in the vicinity bounded by 54°-56° N latitude and 35°-40° E longitude. The soil types
in this region are mainly sod-podzolic and grey forest. The portion of ground soil that was
of most interest was the top 10 cm. The specific ingredients that were blended to build the
"most probable" dust cloud were: 1) red art clay, 2) minspar 200 feldspar, 3) Otiawa
quartz, 4) peat moss, and 5) a glass made from constituents 1-4 using ceramic forming and
firing methods. An analysis of each of the above components is described in Dunn and
Kim (1991).

This blend was tested previously in the TS6 HSTS (Dunn and Kim--1991). In that
work, none of the blends constructed using the new dust blend materials resulted in de-
posits on the vanes for the maximum temperatures achievable in the T56 combustor (~2150
°F). Measurements were repeated using two dust materials that were found to deposit in
previous tests, blend 2 (containing black scoria) and Mt. St. Helens ash (MSH), with de-
position being observed in both cases. These experiments with blend 2 and MSH verified
that the T56 HSTS was operating properly, but the components of the "most probable”
blend were not depositing. Black scoria was determined to be the component of blend 2
responsible for deposition. Furnace tests performed using the components of the "most
probable” dust blend and blend 2 suggested that the initial water content of a material may
not have a significant impact on whether or not a material will deposit. These results will
be discussed in more detail later in this report.

The purpose of the test series reported here was to determine whether or not depo-

sition of the "most probable” dust blend would occur at the higher turbine inlet tempera-



tures (TIT) encountered in the F-100 engine, and to determine some of the parameters that
control deposition. This information was needed in preparation for an upcoming test scries
that will utilize of a F-100 turbofan engine that is to be subjected to blends made up of the
"most probable" blend constituents. Specifically, some of the parameters thought to con-
trol deposition are: 1) the amount of free-water in the dust blend, 2) the amount of bound
water in the dust blend, 3) the amount of glass in the dust blend, 4) the turbine inlet tem-
perature, and 5) the vane metal temperature. A test matrix designed to test each of the
above parameters was jointly constructed by DNA and Calspan using results from the T56
HSTS, designated dust concentrations of interest, and turbine inlet temperatures from the
nominal maximum for the T56 combustor (1394 K) to the nominal maximum for the F-100
combustor HSTS (1644 K). The order of priority for the test blends was determined as-
suming that it might be pﬁssible to complete a limited number of tests (which suggests that
the most important tests should be run first). The test matrix is summarized on Fig. 1.
Blend 7 is the "most probable” dust blend agreed to by DNA and it's consultants. Blends 5
and 8, which contain different amounts of peat moss, were designed to investigate the ef-
fect of free-water on deposition. A mixture with increased glass content, blend 9, was
used to investigate the effect of glass concentration on deposition. Blend 10, a mixture
with no glass but high free moisture was used to determine whether or not any minerals
form significant deposits. Blend 10 completed the test matrix with the new glass material.
Blend 2 was run to verify proper operation of the HSTS. Blend 2 was found to deposit in
the two previous F-100 engine experiments, so deposition was expected to occur in the F-
100 HSTS. Dried blend 2, a blend with the same primary composition as blend 2 but with
the scoria component heated in an oven to drive off the trapped moisture, was used to de-
termine the effect of bound water on deposition. The presence of impurities, e.g. water, in
a mineral has the effect of lowering the melting temperature. If the bound water is diiven
off by heating, the melting temperature of the scoria should increase. If this is the case,

then one would not expect to observe deposition when using the dried blend 2.



Blend 5

25% quanz
25% feldspar
25% R.A. clay
0% peat moss

25% glass

Blend 7

25% quarntz
25% feldspar
25% R.A. clay
15% peat moss
10% glass

Glass deposit ?

No

Yes

Determine threshold
temperature

Vary vane
temperature

Blend 8

18% quartz
18% feldspar
19% R.A. clay
35% peat moss
10% glass

Blend 9

0% quantz
16% feldspar
17% R.A. clay
17% peat moss
50% glass

Glass deposit ? |

No

Yes

Determine threshold
temperature

Vary vane
temperature

—{ Glass deposit ?

No

Yes

Determine threshold
temperature

Vary vane
temperature

Blend 10

25% quarnz
25% feldspar
25% R.A. clay
25% peat moss
0% glass

Yes

Glass deposit ?

No

Determine threshold
temperature

Vary vane
temperature

Blend 2

6% bentonite
26% H. sand
26% C. clay
42% B. scoria

Glass deposit ?

Yes

No

Determine threshold
temperature

Vary vane
temperature

Dried blend 2
6% bentonite
26% H. sand
26% C. clay
42% B. scoria
(dried @ 1800
°F for 30 min.)

Glass deposit ? |

No

Yes

Determine threshold
temperature

Vary vane
temperature

g

Yes

Glass deposit ?

Determine threshold
temperature

Vary vane
temperature

Fig. 1--Test matrix for F-100 combustor measurement program.




SECTION 2
EXPERIMENTAL TECHNIQUE AND TEST APPARATUS

2.1 TESTING OF ENGINE COMBUSTORS.

A decision was made early in this program to use actual engine hardware for the test
in order to best simulate conditions encountered during engine operation in dust clouds.
The combustor and associated hardware and high pressure turbine vanes from a F-100
engine were to build a test system. This test system, which is to be fed by an external
pressure source (not the engine compressor), will be referred to hereafter as the HSTS.

Shown on Table 1 are the operating parameters for the F-100 engine.

Table 1. Operating parameters for the F-100 engine.

Sea level 25,000 ft
takeoff cruise, M=0.7
w (kg/s) 53.6 28.1
P, (MPa) 2.183 1.06
T, (K) 1658 1459
Fuel flow (Ipm) 847 38.2
F/A ratio 0.0254 0.0218
AP fuel nozzle (MPa) 1.14 0.725

It is not necessary to operate the HSTS at these conditions, however. To duplicate
the important flow parameters for the HSTS accurately, four conditions need to be
satisfied: 1) The airflow distribution within the engine combustor must be duplicated. This
can be performed by keeping the HSTS flow function (FF), given by

w\/T

FF= P

close to the value of FF in the engine. It can be seen that the ratio of airflow through the

HSTS to that in the engine can be below unity as long as the pressure is reduced a corre-



sponding amount. Discussions with Pratt and Whitney have indicated that the minimum
test section pressure should be on the order of 0.55 MPa (80 psia) in order to avoid
problems with atomization of fuel in the fuel nozzles. The implications are that the HSTS
can be operated at about a third of the weight flow required for the engine. This represents

a tremendous savings in air compressor rental costs along with a reduction in the associated

FVE [14. 3 (L:)\/—F]

noise level. The flow function can be computed to be FF=701—F

psia
for the two engine operating conditions shown on Table 1. 2) For the purposes of this test
program, it is desirable to keep the residence time of the particles within the combustor con-
stant. If the flow function and temperature levels within the HSTS are matched, then this
condition will be satisfied. The mass flow through the combustor is given by

w=pAv = -ﬁ%.-Av

If both the pressure and mass flow decrease by the same amount (to keep FF constant), the
velocities within the HSTS and engine combustor (and therefore the particle residence
times) will remain the same. 3) It is also desirable to keep the temperature within the HSTS
close to the temperatures within the engine. This can be done by adjusting the fuel/air ratio.
The HSTS external compressor delivers air at a temperature of ~356 K (180 °F), signifi-
cantly lower than the engine compressor exit temperature of ~733 K (860 °F). The fuel/air
ratio in the HSTS must therefore be increased in order to produce the correct exit tem-
peratures. This can increase the combustor exit pattern factor, i.e., increase the non-uni-
formity in the combustor exit temperature, in addition to producing a smokey exhaust.
These are, however, relatively minor problems. 4) Lastly, the thermal behavior of the par-
ticle in the HSTS should be similar to that in the engine. This is governed by the thermal

time constant of the particle (1,), i.e., the time it takes for the initial particle to gas tem-

perature difference to decay by a factor 1/e. For the configuration given below, the



thermal time constant can be calculated to be

e %)
t  hA h

where the subscript p refers to the particle. It is necessary to keep 1, for the HSTS equal to

1, for the engine combustor. The Nusselt number for a sphere in cross-flow is given by

0.6
v”dppf] hd

p
Nu—0.37( llf kf

where the subscript f refers to the fluid. Solving for h and substituting into the equation for

T, yields

1.4 .
d Ry
—f Rl | g B2
U6 [T s
Pe )
0.429 0.429
4o, 1 (pf,l) P
T = const

The pressure ratio between the engine and the HSTS is ~3, resulting in an engine to HSTS
particle diameter ratio of 1.48. The particle heat transfer will be duplicated if particles 1.48

times smaller than those originally intended are used. Since the particle sizes entering the



combustor in the engine are not known to this level of accuracy, the differences in the heat
transfer behavior of the particles entering the HSTS and the engine combustor may be
neglected.

The benefits of using lower pressures and mass flows in the HSTS compared to the
actual engine weight flow far outweigh the disadvantages. The lower pressure will be used
for this test series.

The air mass flow rate in the test section must be maintained such that the flow
function at the combustor inlet matches the FF in the engine. For a combustor entry pres-
sure of 0.689 MPa (100 psia) and entry temperature of 356 K (180 °F), an air mass flow
rate of 25.5 kg/s (56.3 1b/s) is required to match the flow function. For the HSTS used to
perform the measurements reported here, the compressed air is supplied by external
compressors (Atlas-Copco PTMS-1500). Each compressor is capable of supplying 42.4
m3/min (1500 cfm) of air. Experience has indicated that is reasonable to plumb six of these
compressors into the rig and that this number will supply the required pressure and weight
flow of air. More compressors could be used if necessary. For atmospheric conditions of
294 K (70 °F) and 0.101 MPa (14.7 psia), a bank of six compressors provide a maximum
mass flow rate of 5.08 kg/s (11.2 1b/s). This air flow is much lower than the 25.5 kg/s
(56.3 1b/s) required to run the full combustor. However, to run a bank of thirty
compressors would be unmanagable and also expensive. Therefore, a compromised posi-
tion must be attained that allows a representative experiment to be performed at a reasonable
cost and degree of complexity. This position was achieved by electing to operate one-
quarter of the combustor as described below.

A F-100 engine combustor has 16 fuel nozzles equally spaced circumferentially.
For the case where a quarter of the combustor (4 nozzles) is tested at a mass flow rate of
5.08 kg/s (11.2 1b/s) (six compressors) and a combustor entry temperature of 356 K (180
°F), a combustor entry pressure of 0.551 MPa (80 psia) is needed to match the engine

combustor flow function. Discussions with Pratt and Whitney have indicated that this is a



reasonable pressure at which to operate if problems with atomization of the fuel in the fuel
nozzles are to be avoided.
The engine companies routinely test sectors of combustors, so the present test

configuration is consistent with industry practice. Referring to Fig. 2, measurements are

@ ®Og
© ©

H - tighted fuel nozzle end wall
C - unlighted fuel nozzle

Figure 2. Schematic of combustor sector.

taken around the center two fuel nozzles. The two lighted fuel nozzles adjacent to them are
used to obtain the proper boundary conditions. The two unlighted fuel nozzles at the ends
are provided so that the airflow through them protects the test sector end walls from the hot
combustion gases. The end fuel nozzles can be eliminated if the test sector end walls are
made of a material (e.g.--a high temperature ceramic) that can withstand the high
temperatures developed within the combustor. The decision was made to use such a
ceramic material and in this way decrease the required airflow through the combustor by an

additional 1/3.

2.2 DESCRIPTION OF F-100 HSTS.
A schematic of the test facility is shown on Fig. 3. A much more detailed
description of the facility is given in Kim, Baran and Dunn (1991). The air enters a high

pressure (0.965 MPa) chamber where it is metered. The mass flow rate through the test



~0.267 Ib/s, ~0.067 Ib/s per feeder line, 4 lines
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Figure 3. Schematic of F-100 HSTS.




section is controlled by the flow choke area between the high and low pressure chambers.
The pressure within the test section is set by adjusting the choke flap area at the exit of the
exhaust duct. A dust/air mixture is injected into the inlet of the pipe and allowed to come
into equilibrium before entering the combustor. Fuel is supplied to the combustor using a
separate fuel delivery system. The combustion products are passed through the high pres-
sure vane which are cooled with approximately 6% of the main air flow. The cooling air
ports which would normally be used to route cooling air to the vanes and rotors down-
stream of the first vane were blocked off in this test configuration. Due to the high
temperature of the exhaust gases, water jets downstream of the vanes were used to reduce
the exhaust gas temperature down to an acceptable level. A photograph of the test section
showing the combustor with the vanes in place along with the water injection nozzles is
given in Fig. 4. A general view of the HSTS is shown on Fig. 5.

Provision was made to cool two of the vanes (each vane unit contains two airfoils)
independently from the remainder of the vane row to determine the effect of increasing or
decreasing cooling air (and thus vane temperature) on material deposition. These vanes are
hereafter referred to as ICVs (independently cooled nozzle guide vanes). A schematic of
their piping is shown on Fig. 6. A Platnium-Rhodium thermocouple was installed in one
of these ICVs at 20% chord on the pressure side so that the operating temperature of this

NGYV could be continuously recorded.

2.3 DETERMINATION OF DUST FEED RATES.

Because the air ingested by the engine at the inlet is compressed in making its way
to the combustor, the dust concentration at the combustor inlet is significantly higher than at
the engine inlet. The rate at which dust is fed into the HSTS must reflect this compression
ratio. It is necessary to calculate the proper rate at which to feed dust into the HSTS such

that the dust concentration at the inlet is equivalent to the dust concentration at the engine

10
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Figure 4. Internal view of F-100 HSTS.



General view ol F-100 HSTS,

Fionre 5.
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combustor inlet. It has been shown Dunn and Kim (1991) that the appropriate dust

concentration at the HSTS inlet is given by

M
engine
cl HSTS = M Cl engine
' HSTS
where €1 HsTs =dust concentration at the HSTS inlet

€1 engine=dust concentration at the engine inlet

Mengine =engine magnification factor

“=Pengine compressor exit/ Pengine compressor inlet
MysTs =HSTS magnification factor

=PHSTS compressor exi/PHSTS compressor inlet

The dust feed rate is then given by

F=V  usts 1, BsTS

For an F-100 engine operating at sea level takeoff, the engine magnification factor can be
computed t0 be Meggine=7.82. The HSTS has a magnification factor of MygTs=4.65
associated with it. For an inlet concentration of €1 ggine=200 mg/m3 at the engine face, the
corresponding dust concentration at the HSTS inlet is then ¢) ygrs=(7.82/4.65)*200
mg/m3=336 g/min. Six Atlas Copco compressors in series can supply a mass flow rate of
255 m3/min (9000 cfm) of air at the inlet. To achieve a dust concentration of 200 mg/m3, a

dust feed rate of 86 g/min into the combustor is required.

2.4 DATA ACQUISITION.

Data acquisition was performed using an IBM AT compatible along with a Kiethley
500 intelligent acquisition system. All pressures, temperatures and flow rates were ac-
quired every five to ten seconds and stored in data files. Time records of all the important
variables throughout the experimental facility were thus obtained. A sample of the data is

shown on Fig. 7 a,b.

14



Temperature [°F]

Pressure [psig]

120

100

80

60

40

20

R R R R D R I T L AL Sr TRT LT Oy

High pressure chamber

* * - - Combustor entry
------- Combustor exit

P i

100 200 300 400 500

Elapsed time [s]

Figure 7a. Pressure vs time traces for run 8.

3000
-
3
D500 M ewreerenrnriaraneeriresbesressresssseneesseatsshee s e ass s r s e e mesens s e st etere e e et ent i s mrerterntes etneeneenennasserenen
] - - LR L I e P TS R -
: £
L
2000e8........... Tt
15005 ------------------- Combustor exhaust 1 Jinf
4 e Combustor exhaust 2
1 — — ICNGV Temperature
1000-. ................... Jroegrerre e b e
— e e —— e — — —
....... *L
l L4 L] L] L] L Ll LJ v ' L L ILI l L] LJ
300 400 500 600

Elapsaed Time [s]

Figure 7b. Temperature vs. time traces for run 8.

15



SECTION 3

DISCUSSION OF RESULTS

A summary of the 18 runs completed during the course of this study is shown in

Table 2. The test duration for each run was 7 minutes, and all except the first two runs

were at a targeted TIT of 1644 K (2500 °F). Dust concentrations varied from 200 mg/m3

(the baseline concentration) to 1000 mg/m3. A brief narrative of the results from each run

is given following Table 2.

Table 2. Summary of test runs.
Run [Blend| TIT [Engine face Comments
(K) dust conc.
(mg/m3)
1 7 1422 200 No deposits on TIT's or vanes .
2 7 1533 200 No deposits on TITs or vanes .
3 7 1644 200 No deposits on TIT's or vanes .
4 8 1644 200 Glass covered TITs, clean vanes .
5 9 1644 200 Aborted run.
6 9 1644 200 Actual TIT of 1616 K (2450 °F). Some glass on
TITs, clean vanes. Some bumed vane leading
_ edges. Clogged dust feeder.
7 9 1644 200 Actual TIT of 1561 K (2350 °F). Little glass on
TITs, clean vanes.
8 1644 200 Actual TIT of 1533 K (2300 °F). No deposits on
TITs or vanes.
9 10 1644 200 No deposits on TIT or vanes.
10 2 1644 200 Glass on TITs, no deposits on vanes.
11 2 1450 200 Glass on TITs, no deposits on vanes.
12 2 1644 500 Glass on TITs, little deposits on vanes.
13 2 1644 1000 Glass on TITs, little deposits on vanes.
14 2 1644 500 With decreased airflow to ICV. Glass on TITs,
significant deposits found on ICV pair.
15 7 1644 500 Glass on TITs, no deposits on vanes. Damage to
ICV from 10-25% chord on suction side.
16 |Dred| 1644 500 Glass on TITs, no deposits on ICVs probably due
blend to damage to ICV pair.
2
17 2 1644 500 Glass on TITs, no deposits on ICVs probably due
to damage to ICV pair.
18 | MSH| 1644 500 Glass on TITs, no deposits on ICVs, probably due

to damage to ICV pair.
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The ICVs were operated with more cooling air than their neighbors during runs 1-13 to in-

vestigate the effect of cooler vane metal temperatures on deposition behavior.

Run 1: TIT=1422 K (2100 °F), 7 minute dust duration, Blend 7, 200 mg/m3. A drop in
TIT of ~56 K (100 °F) within ~1 minute was observed when the dust was turned on. No
deposits were expected during this run as no deposits were seen in the T56 HSTS which
operated at a TIT of 1450 K (2150 °F). Borescope: No deposits were found on either the
TIT probes or on the vanes.

Run 2: TIT=1533 K (2300 °F), 7 dust duration, Blend 7, 200 mg/m3. Borescope: No

deposits were found on either the TIT probes or on the vanes (see comments below).

Run 3: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 7, 200 mg/m3. TIT
dropped ~56 K (100 °F) initially, then increased to ~1700 K (2600 °F) at 6 minutes after
dust initiation. Borescope: No deposits were found on either the TIT probes or on the
vanes (see comments below). It was thought (rather prematurely as discussed in the
following discussion) at this point that no deposits would be observed in the engine

combustor for the "most probable” blend (blend 7).

Run 4: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 8, 200 mg/m3. Borescope:

No deposits were seen on either the TIT probes or on the vanes (see comments below).

After run 4, the TIT probes were removed to move them to different positions.
They were found to be covered with a clear glass on the front side and a mixture of glass
and soot on the back side. A photograph of a TIT probe covered with this clear glass is

shown on Fig. 8. The clear glass on the front of the probes was not obvious through the
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Figure 8.  Glass covered TIT probe.




borescope, and thus the TIT probes were thought to be clean after runs 1-4. The back end
of the combustor was then pulled off to check if the vanes were also covered with this
glass. However, no deposits were seen on the vanes. Samples of the glass deposits on the
TIT probes were collected. The glass was 'very difficult to remove from the TIT probes,
requiring a hammer to break it free. It was felt at this point that glass deposition occurs on
the TIT probes but not on the vanes probably because the surface temperature of the TIT
probes in the HSTS was much hotter than the vane suraface temperature. Even in the en-
gine, the vane metal temperature would be less than the temperature of the TIT probe, but
not as much less as for the currently configured HSTS. Surface temperature was thus sus-

pected to be an important parameter in determining whether or not deposition would occur.

Run 5: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 9, 200 mg/m3. An aborted
run. Difficulty was encountered in getting ignition in the combustor. The four fuel nozzles
were pulled from the combustor and inspected. The back side of the fuel nozzles was
found to be caked with dust, which may have prevented the swirl and recirculating flow
within the combustor which is necessary for proper combustor operation. This problem
was felt to be due to moisture in the incoming air stream. Also, the fuel nozzle directly up-
stream of the ignitor was found to be clogged. All the fuel nozzles were cleaned and the
clogged fuel nozzle replaced. From this point on, the fuel nozzles were cleaned and in-
spected after every run. It should be noted that during the full-scale engine tests (Dunn,
M.G. 1990a,b) the front side of the fuel nozzles became coated with a black carbon-like
material that prevented atomization of air and relight. The nature of the fuel nozzle deposi-

tion experienced in the HSTS was not, however, the same as experienced in the engine.

Run 6: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 9, 200 mg/m3. A repeat of
the conditions in Run 5. A TIT of 1561 K (2350 °F) to 1617 K (2450 °F) was reached,

which was lower than the target TIT. Borescope: Some glass was found on the TIT, but
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not nearly as much as after Run 4. No deposits were found on the vanes. The leading
edges of some of the vanes were found to have burmed away (<10% chord, 70%-100%
span). As the damage to the vanes was not extensive, a decision was made to run with the
vanes in the damaged condition as long as possible. It was also found that the dust feeder

had clogged during the run. The run was therefore repeated.

Run 7: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 9, 200 mg/m3. A repeat of
run 6. A TIT of 1561 K (2350 °F) was achieved, which was lower than the target TIT.
Borescope: Very little deposits were found on the TIT probes. No deposits were found on
the vanes. No further damage to the vanes was observed. A surface temperature of >1589

K (2400 °F) seems necessary in order for glass to deposit on the TIT probes.

Run 8: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 5, 200 mg/m3. A TIT of
1550 K (2330 °F) was achieved. Borescope: No deposits were found on either the TIT
probes or the vanes. This supports the earlier speculation that a surface temperature greater

than 1589 K (2400 °F) appears to be necessary for glass to deposit on the TIT probes.

Run 9: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 10, 200 mg/m3. As this
blend contains no glass, no deposition of material on either the TIT probes or the vanes
was expected. A TIT of 1644 K (2500 °F) was achieved. Borescope: The TIT probes
were found to be covered with glass. The glass was clear on the front, as observed earlier.
The vanes had a reddish-discoloration on the first 50% of the chord. Since there was the
possibility of glass undemeath the dust, the HSTS was taken apart to get a better look at the
vanes. The reddish discoloration seen during borescoping turned out to be dust on the
vane surface. This dust was easily scraped off. No glass was found on the vane surfaces.

The fact that glass was found on the TIT probes for a run where no synthetic glass was
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present in the dust blend suggests that some other component(s) in the blend is responsible

for the deposition on the TIT probes.

The results to this point all indicated that the dust blends containing the synthetic
glass do not deposit unless the surface onto which the particles impact is at a temperature
greater than ~1589 K (2400 °F). It was decided to proceed to blend 2, the scoria containing

blend.

Run 10: TIT=1644 K (2500 °F), 7 minute dust duration, blend 2, 200 mg/m3. A sharp
rise in TIT was observed soon after the dust was turned on. Fuel flow was cut back from a
nominal value of 8.59 I/min (2.27 gpm) to 7.31 I/min (1.93 gpm) to maintain indicated TIT
at 1644 K (2500 °F). It is speculated that molten particles from the hot zone of the
combustor impinge on the TIT probes and deposit, giving up their heat in the process.
This causes the indicated TIT to increase above the actual gas flow temperature.
Borescope: The TIT probes were found to be covered with glass. However, the vanes had

a reddish dust covering them, but no significant deposits were found.

The fact that blend 2 did not deposit on the vanes was an interesting result, espe-
cially since blend 2 was observed to cause deposition when run in the engine. The focus of
the study now changed to determine what mechanism(s) controls the deposition behavior of
blend 2. Three points of difference between the HSTS and the engine combustor were
thought to be significant. Specific tests were developed to test each hypothesis. First, the
previous engine tests were run at conditions for which the TIT did not reached the levels
obtained in the HSTS. It was speculated that perhaps the TIT needed to be lowered to get
blend 2 to deposit. A run at a TIT of 1450 K (2150 °F) was selected since blend 2 de-
posited in the previous T56 HSTS at this TIT. Second, the concentration of blend 2 used
in the engine tests and the TS6 HSTS tests were 500 mg/m3 and 1000 mg/m3, respectively.
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A test was made with the increased concentrations to determine whether or not deposition
occurs. Third, the temperature of the cooling air coming into the vanes in the engine is
much higher (~756 K) than in the HSTS (~328 K). This means that the vane surface
tempertaure is much hotter in the engine than in the HSTS. A test was made with reduced
cooling air to the independently cooled vane pair to determine the effect of vane surface

temperature on deposition.

Run 11: TIT=1450 K (2150 °F), 7 minute dust duration, blend 2, 200 mg/m3. This was a
test of the first hypothesis. The TIT was maintained at 1450 K (2150 °F) (5.6 K) during
the test. Borescope: Glass covered TIT probes were found as in the previous run. This is
in contrast to the synthetic glass containing blends (the "most probable" blends) which
required a surface temperature of greater than 1589 K (2400 °F) in order for deposition of
occur. The vanes were clean, suggesting that decreasing the TIT does not cause deposition
of blend 2 to occur. The results of this test, however, verified that blend 2 deposits on
surfaces which are at temperatures much lower than those required to get the synthetic glass
containing mixtures to deposit. The reader is reminded that surface temperatures in excess
of 1589 K (2400 °F) were required in order to get the "most probable” synthetic glass
containing blends (blends 7-10) to deposit.

Run 12: TIT=1644 K (2500 °F), 7 minute dust duration, blend 2, 500 mg/m3. Test of
second hypothesis. The TIT was steady at 1644 K (2500 °F) throughout the run.
Borescope: TIT probes were covered with glass. Some deposits were found on the vanes,
but not nearly as much as in the engine or the T56 HSTS runs. The HSTS was taken apart

and the deposits were collected.

Run 13: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 2, 1000 mg/m3. Test of

second hypothesis, but at a higher concentration. TIT increased to 1708 K (2615 °F)

Q
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during run. Borescope: The TIT probes were covered with clear glass. The vanes have
caked dust on the leading edges and further back, but not nearly as much as in the engine or
the T56 HSTS. The HSTS was taken apart and the deposits were collected. Some
clogging of the vane cooling air inlets (see Fig. 9), which has the effect of decreasing the
cooling air to the vanes, was also noticed. The results of the above two tests indicated that
concentration does not play a significant role in determining whether or not a dust blend

deposits. The concentration is important once deposition begins to occur.

It was interesting to note that deposits usually occurred at locations where the vane
had been damaged (the local vane temperature at these points was sufficiently high to canse
melting of the vane surface). A photograph of the vane row before and after the deposits
were removed (Fig. 10 a,b) illustrates this point. This behavior again suggests that the
surface temperature onto which the particles impact must be above a certain threshold
temperature if deposition is to occur. Furthermore, a comparison of the blend 9 and the
blend 2 results suggests that deposition is also dependent upon the physical characteristics
of the impinging material.

Inspection of the above photographs reveals another damage mechanism (one sepa-
rate from deposition) that can occur in engines. Close inspection of the leading edges of
the vanes shows that the showerhead cooling air holes have been plugged with dust, result-
ing in a decrease in film cooling effectiveness. This plugging allows the surface
temperature of the vane to increase above the vane melting temperature, resulting in damage
to the vanes. Shown on Fig. 11 is a closeup view of the leading edges of two vanes that
shows regions where clogging of the cooling holes has occurred and the resultant damage
to the vane. It is suspected that this mechanism caused the damage to the leading edges of

the vanes that was observed during post-test inspection after run 6.
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Run 14: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 2, 500 mg/m3. This was a
test of the third hypothesis. The temperature of the ICV (which consistently had been held
at ~644 K (700°F) throughout all the previous runs) was increased by decreasing the
cooling air to it. Althoagh an ICV temperature of 783 K (950 °F) was targeted, the
temperature reached a m:ximum of ~1089 K (1500 °F) during the run. TIT was steady at
1644 K (2500 °F) throughout the run. Borescope: Significant deposits were found on the
ICV. Smaller amounts of deposits were found on the other vanes as indicated in Table 3.
The TIT probes were covered with glass. The HSTS was taken apart and the deposits
were collected. Increasing the vane surface temperature significantly increased the amount
of deposition. This paiameter seems to be the key to determining whether or not a
particular dust blend deposits. It was decided to verify whether or not one of the mixtures
containing synthetic glass would deposit on the ICV at elevated temperature. Run 15isa

repeat of run 14 with blend 7 replacing blend 2.

Table 3. Deposit distribution on vanes after run 14.

Location Mass of dust collected (L
Ttom ICV 15.96
From vane next to ICV 5.50
From re nainder of vanes 6.98

Run 15: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 7, 500 mg/m3. TIT was
steady at 1644 K (2500 °F) throughout the run. The ICV temperature increased to 1106 K
(1530 °F), then dropped to 672 K (750 °F), then increased and leveled off at ~811 K (1000
°F). Borescope: Very little deposits were found on the ICV. The TIT probes were
covered with glass. The back end of the vane next to the ICV where deposits were found
(5.5 g) on the previous run was burned away. A photograph of this vane is shown on
Fig. 12. It was found laier (after Run 18) that the cooling air ports for this burmed vane

were blocked off by caked dust, preventing passage of cooling air flow. The temperature
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of the vane increased sufticiently to cause the back end of the vane to melt. It is suspected
that this process began Jduring run 14, which allowed the vane surface temperature to
increase sufficiently to er.able blend 2 to deposit during that run. The suction sides of the
ICV had also burned away from ~10% to 25% chord, indicating ICV temperatures reached
the melting point of the vane material. The fact that deposition was not seen on the ICV
suggests that deposition of the synthetic glass occurs only at temperatures above the vane
metal melting point. Since the vanes run at temperatures lower than their melting point in
an engine, it is felt at this time that deposition will probably not occur in the engine when
using the "most probatle” blend. The above is supported by the observation that
deposition of the "most probable” blend only occurs on the TIT probes for probe

temperatures above ~1589 K (2400 °F), far above the vane material melting temperature.

To repair and re-instrument the ICVs was going to require more time than was
available. Therefore, a decision was made to continue running the HSTS in its present
condition and obtain wh:tever relevant data possible. Blend 2 containing the dried scoria
was run next. If the hypothesis that driving off the bound water makes the scoria more
"pure” by reducing the inpurities (of which water is one of the most pervasive) is correct,

then this blend should exliibit less of a tendency to deposit.

Run 16: TIT=1644 K (2500 °F), 7 minute dust duration, Dried Blend 2, 500 mg/m3. The
TIT probes were not reading correctly due to damage sustained during testing to this point
in the test matrix, so this run was therefore performed using fuel flow as an indicator of
TIT. The fuel flow required to obtain TIT=1644 K (2500 °F) was found from previous
runs to be consistently ncar 2.27 gpm. The fuel flow throughout this run was held at this
flow rate. The indicated {CV temperature varied from 594 K (610 °F) to 811 K (1000 °F).
This variation was felt to be due to the damage done to the ICV during run 15. Borescope:

The TIT probes were co:.ted with glass. No deposits were observed on the vanes, which
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was unexpected and warrented further verification checks to ensure the operational state of

the HSTS.

It was clear at this point that the ICVs had been badly damaged, so it was decided to re-run
Blend 2 with the un-dried scoria to determine if this damage to the ICV had caused

unreliable results for the dried Blend 2 (Run 16).

Run 17: TIT=1644 K (2500 °F), 7 minute dust duration, Blend 2, 500 mg/m3.
Borescope: The TIT probes were covered with glass. No deposits were seen on the ICV.
This test confirmed the suspicion that the HSTS was not giving reliable results due to the
severe damage to the ICV. It was, therefore, not possible to answer the question as to
whether or not the dried blend 2 would have deposited. However, one final run using a
different material that has often been used in these combustors was made to confirm that the

HSTS was not operating properly.

Run 18: TIT=1644 K (2500 °F), 7 minute dust duration, MSH, 500 mg/m3. A run was
made with MSH to check if deposition of MSH would occur. Borescope: The TIT probes
were found to be covered with glass. No deposits were seen on the ICV. This set of
results along with run 17 were sufficiently convincing that testing was terminated pending

repair of the HSTS.
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SECTION 4
CONCLUSIONS

A test facility was designed and constructed using F-100 engine hardware to enable
one to determine the behavior of various dust cloud materials when they are ingested into a
gas turbine combustor flow. The test series reported here was designed to test the behavior
of several blends constructed using the "most probable” constituents of the dust cloud.
These constituents were Ottawa quartz, red art clay, feldspar, peat moss, and a synthetic
glass made from these constituents. No significant deposition of the blends containing the
synthetic glass was observed to occur on the turbine vanes. The most significant parameter
that determines whether or not a particular material deposits was found to be the
temperature of the surface onto which the molten particles impact. The test results indicate
that "most probable” blerds will deposit on surfaces with temperatures greater than ~1589
K (2400 °F). Similar results were found for the scoria containing blend, but with the metal
surface threshold temperature for deposition closer to ~1089 K (1500 °F).

This test series also revealed several potential engine hot section damage mech-
anisms. First, dust may clog the vane showerhead cooling ports, causing loss of cooling
air to the leading edge re zion. If the engine is operated in this mode at a sufficiently high
thrust setting, this lack of cooling air can cause the vane to start burning out at the leading
edge. The remainder of the vane can also progressively bum out. This damage mechanism
can occur on any of the vanes. Second, dust laden air that is used to cool the vanes can
carry dust into the vane cooling air inlet ports, which can result in clogging. The inner
cooling air ports (the por:s entering the vane from the vane hub) supply air to the shower-
head film cooling holes. The outer cooling ports (the ports entering the vane from the vane
tip) supply cooling air to the suction side film cooling holes in addition to providing internal
cooling of the rear of the vane before exiting through slots in the vane trailing edge. If the

inner cooling ports become clogged, the vanes can burn out at the leading edge. Clogging
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of the outer cooling air ports can result in the back end of the vanes buming out. This
damage mechanism seeris to affect the vanes that are lower in elevation, since gravity
causes dust to settle to the bottom of the test section. Both of the engine damage mecha-
nisms discussed above can occur even if the ingested material does not deposit on the
vanes. The third damage mechanism is deposition of material on the vanes, which reduces
the flow area of the first vane row. The results presented in this report demonstrate that
deposition of material on the turbine vanes is very dependent upon the characteristics of the

dust cloud constituents and upon the vane metal temperature.
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NOMENCILATURE

Area
Specific heat or concentration, Subscripts
depending on context

f
Diameter

P
Dust feed rate

t
Flow funcrion

Heat transfer coefficient

Independently cooled nozzle
guide vane

Thermal conductivity
Dust magnification factor
Mass

Mt. St. Helens ash
Nusselt number
Pressure

Gas constunt
Temperature

Turbine inlet temperature
Volume flow rate
Velocity

Mass flow rate

Dynamic viscosity
Density

Time cons:ant
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